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Abstract. In this paper we shall made an analysis of production functions from the 

space point of view. We shall obtain some interesting results like that all the points 

of the surface are parabolic, the total curvature is always null, the conditions when a 

production function is minimal and finally we give the equations of the geodesics on 

the surface i.e. the curves of minimal length between two points. 

Keywords: production functions, metric, curvature, geodesic 

 

1 Introduction 

In the theory of production functions, usual all computations and 

phenomenon are studied on projections of the surface, or for a constant level 

of production. A complete analysis can be made only at the entire surface. 

 In the economical analysis, the production functions had a long and 

interesting history. 

 A production function is defined like P:R+×R+→R+, P=P(K,L) 

where P is the production, K - the capital and L – the labor such that: 

(1) P(0,0)=0; 

(2) P is differentiable of order 2 in any interior point of the production set; 

(3) P is a homogenous function of degree 1, that is P(rK,rL)=rP(K,L) ∀r∈R; 

(4) 
K

P

∂
∂

≥0, 
L

P

∂
∂

≥0; 

(5) 
2

2

K

P

∂
∂

≤0, 
2

2

L

P

∂
∂

≤0. 
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From Euler’s formula for homogenous functions we have: 

(6) 
L

P

∂
∂

=
L

P
-

L

K

K

P

∂
∂

 

By derivation with L and after with K in (6) we obtain: 

2

2

L

P

∂
∂

=
2L

PL
L

P −
∂
∂

+
L

χ
K

P

∂
∂

-χ
KL

P2

∂∂
∂

=-χ
KL

P2

∂∂
∂

 

KL

P2

∂∂
∂

=
L

1

K

P

∂
∂

-
L

1

K

P

∂
∂

-χ
2

2

K

P

∂
∂

=-χ
2

2

K

P

∂
∂

 

therefore: 

(7) 
2

2

L

P

∂
∂

=-χ
KL

P2

∂∂
∂

 

(8) 
2

2

K

P

∂
∂

=-
χ
1

KL

P2

∂∂
∂

 

(9) 
2

2

L

P

∂
∂

=χ2

2

2

K

P

∂
∂

 

2 Some notions of the space differential geometry 

The graph representation of a production function is a surface. 

Let: 

(10) p=
L

P

∂
∂

, q=
K

P

∂
∂

, r=
2

2

L

P

∂
∂

, s=
KL

P
2

∂∂
∂

, t=
2

2

K

P

∂
∂

. 

For a constant value of one parameter we obtain a curve on the 

surface. For example: P=P(K,L0) or P=P(K0,L) are both curves on the 

production surface. They are obtained from the intersection of the plane 

L=L0 or K=K0 with the surface P=P(K,L). 

The curvature of a curve is, from an elementary point of view, the 

degree of deviation of the curve relative to a straight line. 

In the study of the surfaces, two quadratic forms are very useful. 
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The first fundamental quadratic form of the surface is: 

(11) g=g11dL
2
+2g12dLdK+g22dK

2
 

where: g11=1+p
2
, g12=pq, g22=1+q

2
. 

The area element is dσ= 2

122211
ggg − dKdL= ∆ dKdL and the 

surface area A when (K,L)∈R (a region in the plane K-O-L) is 

A= ∫∫ σ
R

dKdLd  where ∆=g11g22-g12
2
. 

The second fundamental form of the surface is: 

(12) h=h11dL
2
+2 h12dLdK+ h22dK

2
 

where: h11=
22 qp1

r

++
, h12=

22 qp1

s

++
, h22=

22 qp1

t

++
. 

Considering the quantity δ=h11h22-h12
2
 we have that: 

• If δ>0 in each point of the surface, we will say that it is elliptical. Such 

surfaces are the hyperboloid with two sheets, the elliptical paraboloid 

and the ellipsoid. 

• If δ<0 in each point of the surface, we will say that it is hyperbolic. Such 

surfaces are the hyperboloid with one sheet and the hyperbolic 

paraboloid. 

• If δ=0 in each point of the surface, we will say that it is parabolic. Such 

surfaces are the cone surfaces and the cylinder surfaces. 

Considering a surface S and an arbitrary curve through a point P of 

the surface who has the tangent vector v in P, let the plane π determined by 

the vector v and the normal N in P at S. The intersection of π with S is a 

curve Cn named normal section of S. Its curvature is called normal curvature. 
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Figure-1: The normal section of a curve 

If we have a direction m=
dK

dL
 in the tangent plane of the surface in 

an arbitrary point P we have that the normal curvature is given by: 

(13) k(m)=
2212

2

11

2212

2

11

gmg2mg

hmh2mh

++
++

 

 The extreme values k1 and k2 of the function k(m) call the principal 

curvatures of the surface in that point. They satisfy also the equation: 

(14) (g11g22-g12
2
)k

2
-(g11h22-2g12h12+g22h11)k+(h11h22-h12

2
)=0 

 The values of m, who give the extremes, call principal directions in 

that point. 

 They also satisfy the equation: 

(15) (g11s-g12r)m
2
+(g11t-g22r)m+(g12t-g22s)=0 

 The curve 
dK

dL
=m (where m is one of the principal directions) is 

called line of curvature on the surface. On such a curve we have the 

maximum or minimum variation of the value of Q in a neighborhood of P. 
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 The quantity K=k1k2 is named the total curvature in the considered 

point and H=
2

kk
21

+
 is named the mean curvature of the surface in that 

point. 

 We have therefore: 

(16) K=
2

122211

2

122211

ggg

hhh

−
−

=
∆
δ

 and H=
2

122211

112212122211

ggg

hghg2hg

−
+−

 

 A surface with K=constant call surface with constant total curvature 

and if H=0 call minimal surface. 

 If we consider now in the tangent plane π at the surface in a point P 

a direction m, if h11m
2
+2 h12m+h22=0 we will say that m is an asymptotic 

direction, and the equation: 0h
dK

dL
h2

dK

dL
h

2212

2

11
=++








 gives the 

asymptotic curves of the surface in the point P. 

 

3 The space differential geometry for production functions 

 From (6), (10) we have that: 

(17) g11=1+

2

L

P









∂
∂

=1+ ( )2

2
KqP

L

1
−  

(18) g12=
L

P

∂
∂

K

P

∂
∂

= ( )KqP
L

q
−  

(19) g22=1+

2

K

P









∂
∂

=1+q
2
 

(20) ∆=g11g22-g12
2
=1+q

2
+ ( )2

2
KqP

L

1
−  

We have also: 1+p
2
+q

2
=1+

2

L

P









∂
∂

+

2

K

P









∂
∂

=∆ and: 
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(21) h11=
∆
1

2

L

K








t 

(22) h12=-
∆
1

L

K
t 

(23) h22=
∆
1

t 

(24) δ=h11h22-h12
2
=0 

From (24) we have that all the points of the surface are parabolic. 

 The principal curvatures satisfy the equation: 

(25) 
3

∆ L
2
k

2
-t(P

2
+L

2
+K

2
)k=0 

therefore: k1=0, k2=
2

3

222

L

)LKP(t

∆

++
<0. 

 The values of m corresponding to k1 and k2 satisfy the equation: 

(26) (Eµ-Fλ)m
2
+(Eν-Gλ)m+(Fν-Gµ)=0 

If t≠0 then 

( )[ ] [ ] [ ] 0KqPLmKqKP2PLLmKqPPLK 222222 =++−−++−+−  

 We have now: 

(27) K=
2

2

FEG −
µ−λν

=0 

therefore the surface is with null constant total curvature and: 

(28) H=
3

2

222

L

)KLP(t

∆

++
. 

In order to have a minimal surface we must have: t=0 therefore 

2

2

K

P

∂
∂

=0 i.e. 
K

P

∂
∂

=f(L) and after: P=f(L)K+g(L) where f,g are differentiable 

functions of order two. 
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 The asymptotic directions are, if t≠0: 

(29) 

2

1m
L

K







 − =0 

therefore: m=
K

L
. But m=

dK

dL
 gives that K=CL with C=constant. 

 With notations x
1
=L, x

2
=K, let define now the Christoffel symbols 

of first order: 

(30) ij,k= 








∂

∂
−

∂
∂

+
∂

∂
k

ij

j

ik

i

jk

x

g

x

g

x

g

2

1
 

and of second order: 

(31) 
kj

i
=g

i1jk,1+g
i2jk,2 

where g
11

=
∆
1

G, g
12

=-
∆
1

F, g
22

=
∆
1

E are the components of the inverse 

matrix of 








2212

1211

gg

gg
. 

We have now: 

(32) 11,1=
L

g

2

1
11

∂
∂

, 11,2=
K

g

2

1

L

g
1112

∂
∂

−
∂

∂
, 12,1=

K

g

2

1
11

∂
∂

, 

12,2=
L

g

2

1
22

∂
∂

, 

         22,1=
L

g

2

1

K

g
2212

∂
∂

−
∂
∂

, 22,2=
K

g

2

1
22

∂
∂

 

(33) 
11

1
=g

1111,1+g
1211,2=

∆
1


















∂
∂

−
∂

∂
−

∂
∂

K

g

2

1

L

g
g

L

g
g

2

1
1112

12

11

22
, 
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11

2
=g

2111,1+g
2211,2=

∆
1


















∂
∂

−
∂

∂
+

∂
∂

−
K

g

2

1

L

g
g

L

g
g

2

1
1112

11

11

12
, 

        
12

1
=g

1112,1+g
1212,2=

∆
1










∂
∂

−
∂
∂

L

g
g

2

1

K

g
g

2

1
22

12

11

22
, 

        
12

2
=g

2112,1+g
2212,2=

∆
1










∂
∂

+
∂
∂

−
L

g
g

2

1

K

g
g

2

1
22

11

11

12
, 

        
22

1
=g

1122,1+g
1222,2=

∆
1










∂
∂

−








∂
∂

−
∂
∂

K

g

2

1
g

L

g

2

1

K

g
g 22

12

2212

22
, 

        
22

2
=g

2122,1+g
2222,2=

∆
1










∂
∂

+








∂
∂

−
∂
∂

−
K

g
g

2

1

L

g

2

1

K

g
g 22

11

2212

12
 

 From (6)-(10) we can write: 

(34) p=
L

KqP −
, s=-

L

K
t, r=

2

L

K








t 

We have from (17)-(19): 

(35) 
K

g
11

∂
∂

=
( )

2L

KqPKt2 −
− , 

L

g
11

∂
∂

=
( )

3

2

L

KqPtK2 −
 

(36) 
K

g
12

∂
∂

=
( )

L

Kq2Pt −
, 

L

g
12

∂
∂

= ( )Kq2P
L

Kt
2

−−  

(37) 
K

g
22

∂
∂

=2qt, 
L

g
22

∂
∂

=-
L

K
2qt 

From (33)-(37) we obtain: 

(38) 
11

1
=

32

2

L

)KqP(tK

∆
−

, 
11

2
=

22

2

L

tqK

∆
,  

12

1
= -

22L

)KqP(Kt

∆
−

, 
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12

2
=-

L

Kqt
2∆

, 
22

1
= 

L

t)KqP(
2∆

−
, 

22

2
= 

2

tq

∆
 

A geodesic is in common language the shortest curve between two 

points. The equation of a geodesic is: 

(39) 0
ds

dx

ds

dx

jk

i

ds

xd kj

2

i2

=+  

that is: 

(40) 0
ds

dK

22

1

ds

dK

ds

dL

12

1
2

ds

dL

11

1

ds

Ld
22

2

2

=






++






+  

(41) 0
ds

dK

22

2

ds

dK

ds

dL

12

2
2

ds

dL

11

2

ds

Kd
22

2

2

=






++






+  

After a long computation, we have: 

(42) 0
ds

dK
L

ds

dL
K)KqP(t

ds

Ld
L

2

2

2

3 =






 −−+∆  

(43) 0
ds

dK
L

ds

dL
Ktq

ds

Kd
L

2

2

2

2 =






 −+∆  

Because P=P(K(s),L(s)) we have: 

ds

dP
=

K

P

∂
∂

ds

dK
+

L

P

∂
∂

ds

dL
=q

ds

dK
+

L

KqP −
ds

dL
= 








+






 −
ds

dL
P

ds

dL
K

ds

dK
Lq

L

1
 

therefore: 

(44) q=

ds

dK
L

ds

dL
K

ds

dP
L

ds

dL
P

−

−
 

and also: 
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(45) P-Kq=

ds

dK
L

ds

dL
K

ds

dK
P

ds

dP
K

L

−

−
 

(46) ∆=1+q
2
+ ( )2

2
KqP

L

1
− =

2

222

ds

dK
L

ds

dL
K

ds

dK
P

ds

dP
K

ds

dP
L

ds

dL
P

ds

dK
L

ds

dL
K








 −








 −+






 −+






 −
 

If we note now: 

(47) A=
ds

dK
L

ds

dL
K −  

(48) B=
ds

dP
L

ds

dL
P −  

(49) C=
ds

dK
P

ds

dP
K −  

the equations (42), (43) become (again after a long calculus): 

(50) [ ] 0
ds

Pd
AC

ds

Kd
BC

ds

Ld
BA

2

2

2

2

2

2

22 =−++  

(51) [ ] 0
ds

Pd
AB

ds

Kd
CA

ds

Ld
BC

2

2

2

2

22

2

2

=−++  

from where: 

ABCA

ACBC
ds

Ld

22

2

2

−+
−

=

BCAB

BAAC

ds

Kd

22

2

2

−
+−

=

22

22

2

2

CABC

BCBA

ds

Pd

+
+

 

or simply: 
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(52) 
)BCA(C

ds

Ld

222

2

2

−+
=

)CBA(B

ds

Kd

222

2

2

−+
=

)CBA(A

ds

Pd

222

2

2

++
 

The equations of geodesics are: L=L(s), K=K(s) where s is the 

element of arc on the curves. 
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